Overview
For a lot of higher level courses in Machine Learning and Data Science, you find you need to freshen up on the basics in mathematics - stuff you may have studied before in school or university, but which was taught in another context, or not very intuitively, such that you struggle to relate it to how it’s used in Computer Science.
In the first course on Linear Algebra we look at what linear algebra is and how it relates to data. Then we look through what vectors and matrices are and how to work with them.
The second course, Multivariate Calculus, builds on this to look at how to optimize fitting functions to get good fits to data. It starts from introductory calculus and then uses the matrices and vectors from the first course to look at data fitting.
The third course, Dimensionality Reduction with Principal Component Analysis, uses the mathematics from the first two courses to compress high-dimensional data. This course is of intermediate difficulty and will require Python and numpy knowledge.
At the end of this specialization you will have gained the prerequisite mathematical knowledge to continue your journey and take more advanced courses in machine learning.
Applied Learning Project
Through the assignments of this Mathematics for Machine Learning Specialization offered by Coursera in partnership with Imperial College London, you will use the skills you have learned to produce mini-projects with Python on interactive notebooks, an easy to learn tool which will help you apply the knowledge to real world problems. For example, using linear algebra in order to calculate the page rank of a small simulated internet, applying multivariate calculus in order to train your own neural network, performing a non-linear least squares regression to fit a model to a data set, and using principal component analysis to determine the features of the MNIST digits data set.
Get more details
Visit programme websiteProgramme Structure
Courses include:
- Mathematics for Machine Learning: Linear Algebra
- Mathematics for Machine Learning: Multivariate Calculus
- Mathematics for Machine Learning: PCA
Check out the full curriculum
Visit programme websiteKey information
Duration
- Part-time
- 1 months
- 10 hrs/week
Start dates & application deadlines
Language
Delivered
- Self-paced
Disciplines
Mathematics Machine Learning View 52 other Short Courses in Mathematics in United StatesExplore more key information
Visit programme websiteWhat students do after studying
Academic requirements
We are not aware of any specific GRE, GMAT or GPA grading score requirements for this programme.
English requirements
We are not aware of any English requirements for this programme.
Other requirements
General requirements
Beginner Level
- No prior experience required.
Make sure you meet all requirements
Visit programme websiteTuition Fee
-
International
FreeTuition FeeBased on the tuition of 0 USD for the full programme during 1 months. -
National
FreeTuition FeeBased on the tuition of 0 USD for the full programme during 1 months.
- Audit: free access to course materials except graded items
- Certificate: a trusted way to showcase your skills
- A year of unlimited access with Coursera Plus $199
Funding
Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project.