Overview
Key Features
We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.
At the end of this Mathematics for Machine Learning - PCA course offered by Coursera in partnership with Imperial College London, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge.
The lectures, examples and exercises require:
- Some ability of abstract thinking
- Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis)
- Basic background in multivariate calculus (e.g., partial derivatives, basic optimization)
- Basic knowledge in python programming and numpy
Get more details
Visit programme websiteProgramme Structure
Courses include:
- Statistics of Datasets
- Inner Products
- Orthogonal Projections
- Principal Component Analysis
Check out the full curriculum
Visit programme websiteKey information
Duration
- Part-time
- 1 days
Start dates & application deadlines
Language
Delivered
- Self-paced
Disciplines
Mathematics Machine Learning View 52 other Short Courses in Mathematics in United StatesExplore more key information
Visit programme websiteWhat students do after studying
Academic requirements
We are not aware of any specific GRE, GMAT or GPA grading score requirements for this programme.
English requirements
We are not aware of any English requirements for this programme.
Other requirements
General requirements
- Intermediate Level
Make sure you meet all requirements
Visit programme websiteTuition Fee
-
International
FreeTuition FeeBased on the tuition of 0 USD for the full programme during 1 days. -
National
FreeTuition FeeBased on the tuition of 0 USD for the full programme during 1 days.
- Audit: free access to course materials except graded items
- Certificate: a trusted way to showcase your skills
- A year of unlimited access with Coursera Plus $199
Funding
Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project.