Overview
What you will study
This is the popular power distribution design course expanded with more illustrations, exercises and reliability as well as environmental topics. The Making Successful Power Distribution Designs course offered by University of Oxford tutor has also many years of teaching experience as a university professor.
By taking the course:
- You will learn why - as opposed to signal-integrity noise- power distribution noise tends to be very wide band.
- Reverse Pulse Technique, a very powerful, yet simple methodology to find worst-case time-domain PDN noise response.
- You will see that for power distribution applications, losses are many times our friends. You will learn why and how.
- We will demonstrate that 1+1 is not always 2.
- You will see live oscilloscope demonstrations of good and bad converter behaviours.
- We will show that flattening impedance profile is a very effective way to reduce noise.
- You will see the strengths and weaknesses of each and we will discuss how to select the solution suitable for your design on a DDR memory PDN example.
- We will discuss why time domain is better suited for low duty cycle rare, but large noise events. Frequency domain is better to identify any periodic noise component.
- We will explain why impedance matrix is the good metric for PDN, yet most measurements require S-parameters.
- We will show many of the common pitfalls when FFT/IFFT is used to generate PDN response.
- We will illustrate the three-dimensional nature of current distribution at DC.
- We will learn three techniques how to suppress these resonances.
- You will receive a simple design tool, which we will use in the class to show how to design a good PLL filter.
- You will learn how to select components to meet life expectancy, why you should not use an 85-degC rated ceramic capacitor at 85 degree Celsius temperature. We will illustrate why dynamic current balancing is important for reliability.
- We will cover the two-port measurement is the only usable approach for measuring low-impedance PDN.
- Why many suggest (wrongly!) to measure noise across capacitors.
- Discuss some ceramic capacitors and ferrites exhibit strong dependence on DC and AC bias.
- Simulate ceramic capacitors at different temperatures.
- You will learn which those are and how to handle them.
- You will learn why most blind vias can carry more current than plated through holes.
- You will see case studies when you need 1D, 2D or 3D simulators for power planes.
Programme Structure
The program focuses on:
- How power integrity, signal integrity and electromagnetic compatibility interact.
- Calculating worst-case time-domain power-distribution noise.
- Models of vias and pads, models of various capacitors and power planes.
- DC drop on power planes
- DC-DC converters in the power distribution network
- Minimizing noise by creating flat impedance response
- Bypass capacitor selection
- Stackup/layout considerations, proper location and placement of capacitors, plane splits and plane stitching
- Time and frequency-domain description of PDN noise
- What you need to know about network matrices
- Linear network characteristics
- Simulating and measuring DC drop
- High-frequency response, plane modal resonances and their suppression
- Designing PDN filters
- Reliability, life-expectancy and thermal design considerations
- PDN
- Two-port VNA measurements
- Bypass capacitors, ferrites and inductors
- DC and AC bias effects
- DC-DC converters
- Modelling, simulation and measurement
Key information
Duration
- Full-time
- 3 days
Start dates & application deadlines
- StartingApplication deadline not specified.
Language
Delivered
Disciplines
Energy Engineering View 18 other Short Courses in Energy Engineering in United KingdomWhat students do after studying
Academic requirements
We are not aware of any specific GRE, GMAT or GPA grading score requirements for this programme.
English requirements
We are not aware of any English requirements for this programme.
Student insurance
Make sure to cover your health, travel, and stay while studying abroad. Even global coverages can miss important items, so make sure your student insurance ticks all the following:
- Additional medical costs (i.e. dental)
- Repatriation, if something happens to you or your family
- Liability
- Home contents and baggage
- Accidents
- Legal aid
We partnered with Aon to provide you with the best affordable student insurance, for a carefree experience away from home.
Get your student insurance nowStarting from €0.53/day, free cancellation any time.
Remember, countries and universities may have specific insurance requirements. To learn more about how student insurance work at University of Oxford and/or in United Kingdom, please visit Student Insurance Portal.
Other requirements
General requirements
- This course is aimed for industry professionals
Tuition Fee
-
International
1525 GBP/fullTuition FeeBased on the tuition of 1525 GBP for the full programme during 3 days. -
National
1525 GBP/fullTuition FeeBased on the tuition of 1525 GBP for the full programme during 3 days.
Living costs for Oxford
The living costs include the total expenses per month, covering accommodation, public transportation, utilities (electricity, internet), books and groceries.